MATH 110 - SOLUTIONS TO THE FIRST PRACTICE MIDTERM

PEYAM TABRIZIAN

(1) (a) Write out the definition of a subspace

Definition: A subset W of a vector space V is called a **subspace** of V if the following three conditions are satisfied:

- (1) The zero vector $\mathbf{0}$ of V is also in W
- (2) W is closed under addition, that is: If w_1 and w_2 are in W, then $w_1 + w_2$ is in W
- (3) W is closed under scalar multiplication, that is: If w is in W and c is in F, then cw is in W
- (b) Write out the definition of direct sum

Definition: Let V be a vector space and U_1, \dots, U_n be subspaces of V. Then we say that $V = U_1 \oplus \dots \oplus U_n$ if every v in V can be uniquely written as a sum of vectors in $U_1, \dots U_n$. This means:

- (A) Every v in V can be written as $v = \mathbf{u_1} + \mathbf{u_2} + \cdots + \mathbf{u_n}$, where each $\mathbf{u_i}$ is in U_i with $i = 1, \cdots, n$ (that is, there *exists* such a representation)¹
- (B) If $\mathbf{v} = \mathbf{u_1} + \cdots + \mathbf{u_n}$ AND $\mathbf{v} = \mathbf{w_1} + \cdots + \mathbf{w_n}$, where each $\mathbf{u_i}$ and $\mathbf{w_i}$ is in U_i for $i = 1, \cdots, n$, then for every such *i*, we have $\mathbf{u_i} = \mathbf{w_i}$ (that is, such a representation is *unique*)
- (c) Suppose that U and W are subspaces of a vector space V such that V = U + W and $U \cap W = \{0\}$. Show that $V = U \oplus W$.

Based on our definition in (b), we need to show that every vector \mathbf{v} in V can be uniquely written as $\mathbf{v} = \mathbf{u} + \mathbf{w}$, where \mathbf{u} is in U, and \mathbf{w} is in W.

Let v be an arbitrary vector in V. We need to check that (A) and (B) in (b) are true.

(A) First of all, by *definition* of V = U + W, we know that there exist vectors **u** in U and **w** in W such that $\mathbf{v} = \mathbf{u} + \mathbf{w}$. Hence (A) is satisfied.

Date: Wednesday, February 20th, 2013.

¹It's ok to say $V = U_1 + \cdots + U_n$, but then you would have to define what the sum of n vector spaces are

PEYAM TABRIZIAN

(B) Suppose you can write $\mathbf{v} = \mathbf{u} + \mathbf{w}$ and $\mathbf{v} = \mathbf{u}' + \mathbf{w}'$, where \mathbf{u}, \mathbf{u}' are in U and \mathbf{w}, \mathbf{w}' are in W. You want to show that $\mathbf{u}' = \mathbf{u}$ and $\mathbf{w}' = \mathbf{w}^2$

Then we get:

$$\mathbf{u} + \mathbf{w} = \mathbf{u}' + \mathbf{w}' \quad \text{by the above two equations}$$
$$-\mathbf{u}' + (\mathbf{u} + \mathbf{w}) = -\mathbf{u}' + (\mathbf{u}' + \mathbf{w}') \quad \text{adding } -\mathbf{u}' \text{ on the left}$$
$$(-\mathbf{u}' + \mathbf{u}) + \mathbf{w} = (-\mathbf{u}' + \mathbf{u}') + \mathbf{w}' \quad \text{by associativity}$$
$$(-\mathbf{u}' + \mathbf{u}) + \mathbf{w} = \mathbf{0} + \mathbf{w}' \quad \text{by definition of } -\mathbf{u}'$$
$$(-\mathbf{u}' + \mathbf{u}) + \mathbf{w} = \mathbf{w}' \quad \text{by definition of } \mathbf{0}$$
$$(((-\mathbf{u}' + \mathbf{u}) + \mathbf{w}) + (-\mathbf{w})) = \mathbf{w}' + (-\mathbf{w}) \quad \text{adding } -\mathbf{w} \text{ on the right}$$
$$(-\mathbf{u}' + \mathbf{u}) + (\mathbf{w} + (-\mathbf{w})) = \mathbf{w}' - \mathbf{w} \quad \text{by associativity}$$
$$(-\mathbf{u}' + \mathbf{u}) + \mathbf{0} = \mathbf{w}' - \mathbf{w} \quad \text{by definition of } -\mathbf{w}$$
$$-\mathbf{u}' + \mathbf{u} = \mathbf{w}' - \mathbf{w} \quad \text{(by definition of } \mathbf{0})$$

However, since **u** and **u'** are in U and U is a subspace of V, it is closed under scalar multiplication, and hence $-\mathbf{u'}$ is in U, and since U is closed under addition, $-\mathbf{u'} + \mathbf{u}$ is in U

Similarly, since \mathbf{w} and \mathbf{w}' are in W and W is a subspace of V, it is closed under scalar multiplication, and hence $-\mathbf{w}$ is in W, and since W is closed under addition, $\mathbf{w}' - \mathbf{w}$ is in W

It follows that $-\mathbf{u}' + \mathbf{u}$ is in U, but also $-\mathbf{u}' + \mathbf{u} = \mathbf{w}' - \mathbf{w}$ is in W, hence $-\mathbf{u}' + \mathbf{u}$ is in $U \cap W = \{\mathbf{0}\}$ by assumption, therefore $-\mathbf{u}' + \mathbf{u} = \mathbf{0}$ and $\mathbf{w}' - \mathbf{w} = -\mathbf{u}' + \mathbf{u} = \mathbf{0}$.

But then, we get:

 $-\mathbf{u}' + \mathbf{u} = \mathbf{0}$ $\mathbf{u}' + (-\mathbf{u}' + \mathbf{u}) = \mathbf{u}' + \mathbf{0}$ adding \mathbf{u}' to the left $(\mathbf{u}' - \mathbf{u}') + \mathbf{u} = \mathbf{u}'$ by associativity and definition of $\mathbf{0}$ $\mathbf{0} + \mathbf{u} = \mathbf{u}'$ by definition of $-\mathbf{u}'$ $\mathbf{u} = \mathbf{u}'$ by definition of $\mathbf{0}$

Hence $\mathbf{u'} = \mathbf{u}$ And:

²You *could* have used Prop 1.8 and show that if $\mathbf{u} + \mathbf{w} = \mathbf{0}$ (where \mathbf{u} is in U and \mathbf{w} is in W), **BUT** then you would **HAVE** to prove that Prop 1.8 is true (that it is equivalent with your definition in (b))

 $\mathbf{w}' - \mathbf{w} = \mathbf{0}$ $(\mathbf{w}' - \mathbf{w}) + \mathbf{w} = \mathbf{0} + \mathbf{w} \quad \text{adding } \mathbf{w} \text{ on the right}$ $\mathbf{w}' + (-\mathbf{w} + \mathbf{w}) = \mathbf{w} \quad \text{by associativity and the definition of } \mathbf{0}$ $\mathbf{w}' + \mathbf{0} = \mathbf{w} \quad \text{by definition of } -\mathbf{w}$ $\mathbf{w}' = \mathbf{w} \quad \text{by definition of } \mathbf{0}$ Hence $\mathbf{w}' = \mathbf{w}$, and (B) is proved!
Therefore $V = U \oplus W$.

(2) Prove that if $(\mathbf{v_1}, \cdots, \mathbf{v_n})$ spans V, then so does the list:

$$(\mathbf{v_1} - \mathbf{v_2}, \cdots, \mathbf{v_{n-1}} - \mathbf{v_n}, \mathbf{v_n})$$

Let \mathbf{v} be an arbitrary vector in V.

<u>Goal:</u> We want to find scalars a_1, a_2, \dots, a_n in \mathbb{F} such that:

(1)
$$\mathbf{v} = a_1 \left(\mathbf{v_1} - \mathbf{v_2} \right) + \dots + a_{n-1} \left(\mathbf{v_{n-1}} - \mathbf{v_n} \right) + a_n \mathbf{v_n}$$

<u>What we know:</u> Since $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ spans V, we know that there exist scalars b_1, b_2, \dots, b_n in \mathbb{F} such that:

(2)
$$v = b_1 \mathbf{v_1} + b_2 \mathbf{v_2} + \dots + b_n \mathbf{v_n}$$

 $\frac{\text{Scratchwork:}^{3}}{\text{Expanding (1) out, we get:}}$

$$\mathbf{v} = a_1 \left(\mathbf{v_1} - \mathbf{v_2} \right) + \dots + a_{n-1} \left(\mathbf{v_{n-1}} - \mathbf{v_n} \right) + a_n \mathbf{v_n}$$

 $= a_1 \mathbf{v_1} - a_1 \mathbf{v_2} + a_2 \mathbf{v_2} - a_3 \mathbf{v_3} + \dots + a_{n-1} \mathbf{v_{n-1}} - a_{n-1} \mathbf{v_n} + a_n \mathbf{v_n}$ by distributivity $= a_1 \mathbf{v_1} + (a_2 - a_1) \mathbf{v_2} + (a_3 - a_2) \mathbf{v_3} + \dots + (a_n - a_{n-1}) \mathbf{v_n}$ by distributivity

But comparing this with $\mathbf{v} = b_1 \mathbf{v_1} + b_2 \mathbf{v_2} + \cdots + b_n \mathbf{v_n}$, we guess ⁴ that:

(3)
$$a_1 = b_1$$

(4)
$$a_2 - a_1 = b_2$$

- (5)
- $(6) a_n a_{n-1} = b_n$

³Although this is scratchwork, I would prefer if you wrote this on the exam, because in this way I would know how you obtained your a_1, \dots, a_n

⁴**CAREFUL**, this is just a *guess*, it doesn't necessarily *imply* that $a_1 = b_1$, etc., for example, the list $(\mathbf{v_1}, \dots, \mathbf{v_n})$ could be linearly dependent, then there are many different guesses that are correct

That is:

$$a_1 = b_1$$

$$a_2 = a_1 + b_2$$

$$\dots$$

$$a_n = a_{n-1} + b_n$$

Therefore:

$$a_1 = b_1$$

$$a_2 = b_1 + b_2$$

$$\dots$$

$$a_n = b_1 + \dots + b_n$$
In other words:
$$a_i = b_1 + b_2 + \dots + b_i$$
 $(i = 1, \dots n)$

$$(i = 1, \dots n)$$

Proof that your guess works:⁷:

Let's calculate:

$$a_{1} (\mathbf{v_{1}} - \mathbf{v_{2}}) + a_{2} (\mathbf{v_{2}} - \mathbf{v_{3}}) + \dots + a_{n-1} (\mathbf{v_{n-1}} - \mathbf{v_{n}}) + a_{n} \mathbf{v_{n}}$$

$$= a_{1} \mathbf{v_{1}} - a_{1} \mathbf{v_{2}} + a_{2} \mathbf{v_{2}} - a_{2} \mathbf{v_{3}} + \dots + a_{n-1} \mathbf{v_{n-1}} - a_{n-1} \mathbf{v_{n}} + a_{n} \mathbf{v_{n}} \qquad \text{by distributivity}$$

$$= a_{1} \mathbf{v_{1}} + (a_{2} - a_{1}) \mathbf{v_{2}} + (a_{3} - a_{2}) \mathbf{v_{3}} + \dots + (a_{n} - a_{n-1}) \mathbf{v_{n}} \qquad \text{by distributivity again}$$

$$= b_{1} \mathbf{v_{1}} + b_{2} \mathbf{v_{2}} + \dots + b_{n} \mathbf{v_{n}} \qquad \text{by (3)}$$

$$= \mathbf{v} \qquad \text{by (2)}$$

Therefore, working backwards:

$$\mathbf{v} = a_1 (\mathbf{v_1} - \mathbf{v_2}) + a_2 (\mathbf{v_2} - \mathbf{v_3}) + \dots + a_{n-1} (\mathbf{v_{n-1}} - \mathbf{v_n}) + a_n \mathbf{v_n}$$

Hence (1) is satisfied with our choices of a_1, \dots, a_n !

Since **v** was arbitrary, we get $\text{Span}(\mathbf{v_1} - \mathbf{v_2}, \cdots, \mathbf{v_{n-1}} - \mathbf{v_n}, \mathbf{v_n}) = V.$ \Box

4

 $^{^5\}text{Technically},$ you should prove this by induction, just as in the solutions to HW2

⁶It is **CRUCIAL** that you give us an *explicit* formula of the a_i (what you want to show) in terms of b_i (what you know). Just writing $a_i - a_{i-1} = b_i$ would be **WRONG** because you're not guaranteed that this recurrence relation has a solution!

⁷You **HAVE** to include this, the above was just scratchwork, i.e. a recipe to obtain your a_i

(3) (a) Write out the definition of linear independence

Definition: Let V be a vector space and $(\mathbf{v_1}, \dots, \mathbf{v_n})$ a list of vectors in V. Then $(\mathbf{v_1}, \dots, \mathbf{v_n})$ is **linearly independent** in V if for any scalars a_1, \dots, a_n in \mathbb{F} :

$$a_1\mathbf{v_1} + \cdots + a_n\mathbf{v_n} = \mathbf{0}$$
 implies $a_1 = a_2 = \cdots = a_n = 0$

(b) Suppose that p₀, p₁, · · · , p_m are polynomials in P_m(𝒫) such that p_j(2) = 0 for each j, Prove that (p₀, · · · , p_m) is not linearly independent in P_m (𝒫).

Let's prove this by **contradiction**⁸.

Suppose that (p_0, \dots, p_m) is linearly independent in $P_m(\mathbb{F})$.

Then (p_0, \dots, p_m) is a linearly independent list of exactly m + 1 vectors in P_m . However, since dim $(P_m(\mathbb{F}))$ is exactly $m + 1^9$, we conclude that in fact (p_0, \dots, p_m) is a **basis** for $P_m(\mathbb{F})^{10}$.

In particular, by definition of a basis, we get that Span $(p_0, \dots, p_m) = P_m(\mathbb{F}).$

But then, since Span $(p_0, \dots, p_m) = P_m(\mathbb{F})$ and p(x) = 1 (the constant-1 polynomial) is in $P_m(\mathbb{F})$, by definition of Span, get that there are constants a_0, \dots, a_m such that:

$$p = a_0 p_0 + \dots + a_m p_m$$

Hence, by definition of a polynomial (as a function), we get that for **all** *x*:

$$p(x) = a_0 p_0(x) + \dots + a_m p_m(x)$$

In particular, setting x = 2, we get p(2) = 1 (by definition of p) and $p_j(2) = 0$ ($j = 0, 1, \dots, m$), by assumption, hence the above equation becomes:

$$1 = a_0(0) + \dots + a_0(0)$$

That is:

1 = 0

Which is a contradiction $\Rightarrow \Leftarrow$. Hence (p_0, \dots, p_m) cannot be linearly independent in $P_m(\mathbb{F})$, hence it is linearly dependent in $P_m(\mathbb{F})$

⁸Write that on the exam!

⁹You can take this for granted, or prove it by writing finding a basis of P_m and proving that it is a basis

¹⁰This is Prop 2.17 on page 32. For cases like this, you don't have to reprove all of Prop 2.17, it's enough just to write directly that (p_0, \dots, p_m) is a basis for P_m (\mathbb{F}) as long as you say why you can apply it in this situation