MATH 110 - SOLUTIONS TO THE FIRST PRACTICE MIDTERM

PEYAM TABRIZIAN

(1) (a) Write out the definition of a subspace

Definition: A subset W of a vector space V is called a subspace of V if the following three conditions are satisfied:
(1) The zero vector $\mathbf{0}$ of V is also in W
(2) W is closed under addition, that is: If $\mathbf{w}_{\mathbf{1}}$ and $\mathbf{w}_{\mathbf{2}}$ are in W, then $\mathbf{w}_{\mathbf{1}}+\mathbf{w}_{\mathbf{2}}$ is in W
(3) W is closed under scalar multiplication, that is: If \mathbf{w} is in W and c is in \mathbb{F}, then $c \mathbf{w}$ is in W
(b) Write out the definition of direct sum

Definition: Let V be a vector space and U_{1}, \cdots, U_{n} be subspaces of V. Then we say that $V=U_{1} \oplus \cdots \oplus U_{n}$ if every v in V can be uniquely written as a sum of vectors in $U_{1}, \cdots U_{n}$. This means:
(A) Every v in V can be written as $v=\mathbf{u}_{\mathbf{1}}+\mathbf{u}_{\mathbf{2}}+\cdots+\mathbf{u}_{\mathbf{n}}$, where each $\mathbf{u}_{\mathbf{i}}$ is in U_{i} with $i=1, \cdots, n$ (that is, there exists such a representation) ${ }^{1}$
(B) If $\mathbf{v}=\mathbf{u}_{\mathbf{1}}+\cdots+\mathbf{u}_{\mathbf{n}}$ AND $\mathbf{v}=\mathbf{w}_{\mathbf{1}}+\cdots+\mathbf{w}_{\mathbf{n}}$, where each $\mathbf{u}_{\mathbf{i}}$ and $\mathbf{w}_{\mathbf{i}}$ is in U_{i} for $i=1, \cdots, n$, then for every such i, we have $\mathbf{u}_{\mathbf{i}}=\mathbf{w}_{\mathbf{i}}$ (that is, such a representation is unique)
(c) Suppose that U and W are subspaces of a vector space V such that $V=$ $U+W$ and $U \cap W=\{\mathbf{0}\}$. Show that $V=U \oplus W$.

Based on our definition in (b), we need to show that every vector \mathbf{v} in V can be uniquely written as $\mathbf{v}=\mathbf{u}+\mathbf{w}$, where \mathbf{u} is in U, and \mathbf{w} is in W.

Let \mathbf{v} be an arbitrary vector in V. We need to check that (A) and (B) in (b) are true.
(A) First of all, by definition of $V=U+W$, we know that there exist vectors \mathbf{u} in U and \mathbf{w} in W such that $\mathbf{v}=\mathbf{u}+\mathbf{w}$. Hence (A) is satisfied.

[^0](B) Suppose you can write $\mathbf{v}=\mathbf{u}+\mathbf{w}$ and $\mathbf{v}=\mathbf{u}^{\prime}+\mathbf{w}^{\prime}$, where $\mathbf{u}, \mathbf{u}^{\prime}$ are in U and $\mathbf{w}, \mathbf{w}^{\prime}$ are in W. You want to show that $\mathbf{u}^{\prime}=\mathbf{u}$ and $\mathbf{w}^{\prime}=\mathbf{w}$

Then we get:

$$
\begin{array}{rc}
\mathbf{u}+\mathbf{w}=\mathbf{u}^{\prime}+\mathbf{w}^{\prime} & \text { by the above two equations } \\
-\mathbf{u}^{\prime}+(\mathbf{u}+\mathbf{w})=-\mathbf{u}^{\prime}+\left(\mathbf{u}^{\prime}+\mathbf{w}^{\prime}\right) & \text { adding }-\mathbf{u}^{\prime} \text { on the left } \\
\left(-\mathbf{u}^{\prime}+\mathbf{u}\right)+\mathbf{w}=\left(-\mathbf{u}^{\prime}+\mathbf{u}^{\prime}\right)+\mathbf{w}^{\prime} & \text { by associativity } \\
\left(-\mathbf{u}^{\prime}+\mathbf{u}\right)+\mathbf{w}=\mathbf{0}+\mathbf{w}^{\prime} & \text { by definition of }-\mathbf{u}^{\prime} \\
\left(-\mathbf{u}^{\prime}+\mathbf{u}\right)+\mathbf{w}=\mathbf{w}^{\prime} & \text { by definition of } \mathbf{0} \\
\left(\left(-\mathbf{u}^{\prime}+\mathbf{u}\right)+\mathbf{w}\right)+(-\mathbf{w})=\mathbf{w}^{\prime}+(-\mathbf{w}) & \text { adding }-\mathbf{w} \text { on the right } \\
\left(-\mathbf{u}^{\prime}+\mathbf{u}\right)+(\mathbf{w}+(-\mathbf{w}))=\mathbf{w}^{\prime}-\mathbf{w} & \text { by associativity } \\
\left(-\mathbf{u}^{\prime}+\mathbf{u}\right)+\mathbf{0}=\mathbf{w}^{\prime}-\mathbf{w} & \text { by definition of }-\mathbf{w} \\
-\mathbf{u}^{\prime}+\mathbf{u}=\mathbf{w}^{\prime}-\mathbf{w} & \text { (by definition of } \mathbf{0})
\end{array}
$$

However, since \mathbf{u} and \mathbf{u}^{\prime} are in U and U is a subspace of V, it is closed under scalar multiplication, and hence $-\mathbf{u}^{\prime}$ is in U, and since U is closed under addition, $-\mathbf{u}^{\prime}+\mathbf{u}$ is in U

Similarly, since \mathbf{w} and \mathbf{w}^{\prime} are in W and W is a subspace of V, it is closed under scalar multiplication, and hence $-\mathbf{w}$ is in W, and since W is closed under addition, $\mathbf{w}^{\prime}-\mathbf{w}$ is in W

It follows that $-\mathbf{u}^{\prime}+\mathbf{u}$ is in U, but also $-\mathbf{u}^{\prime}+\mathbf{u}=\mathbf{w}^{\prime}-\mathbf{w}$ is in W, hence $-\mathbf{u}^{\prime}+\mathbf{u}$ is in $U \cap W=\{\mathbf{0}\}$ by assumption, therefore $-\mathbf{u}^{\prime}+\mathbf{u}=\mathbf{0}$ and $\mathbf{w}^{\prime}-\mathbf{w}=-\mathbf{u}^{\prime}+\mathbf{u}=\mathbf{0}$.

But then, we get:

$$
\begin{aligned}
-\mathbf{u}^{\prime}+\mathbf{u}=\mathbf{0} & \\
\mathbf{u}^{\prime}+\left(-\mathbf{u}^{\prime}+\mathbf{u}\right)=\mathbf{u}^{\prime}+\mathbf{0} & \text { adding } \mathbf{u}^{\prime} \text { to the left } \\
\left(\mathbf{u}^{\prime}-\mathbf{u}^{\prime}\right)+\mathbf{u}=\mathbf{u}^{\prime} & \text { by associatitivy and definition of } \mathbf{0} \\
\mathbf{0}+\mathbf{u}=\mathbf{u}^{\prime} & \text { by definition of }-\mathbf{u}^{\prime} \\
\mathbf{u}=\mathbf{u}^{\prime} & \text { by definition of } \mathbf{0}
\end{aligned}
$$

Hence $\mathbf{u}^{\prime}=\mathbf{u}$
And:

[^1]\[

$$
\begin{array}{rc}
\mathbf{w}^{\prime}-\mathbf{w}=\mathbf{0} & \\
\left(\mathbf{w}^{\prime}-\mathbf{w}\right)+\mathbf{w}=\mathbf{0}+\mathbf{w} & \text { adding } \mathbf{w} \text { on the right } \\
\mathbf{w}^{\prime}+(-\mathbf{w}+\mathbf{w})=\mathbf{w} & \text { by associativity and the definition of } \mathbf{0} \\
\mathbf{w}^{\prime}+\mathbf{0}=\mathbf{w} & \text { by definition of }-\mathbf{w} \\
\mathbf{w}^{\prime}=\mathbf{w} & \text { by definition of } \mathbf{0}
\end{array}
$$
\]

Hence $\mathbf{w}^{\prime}=\mathbf{w}$, and (B) is proved!
Therefore $V=U \oplus W$.
(2) Prove that if $\left(\mathbf{v}_{\mathbf{1}}, \cdots, \mathbf{v}_{\mathbf{n}}\right)$ spans V, then so does the list:

$$
\left(\mathbf{v}_{\mathbf{1}}-\mathbf{v}_{\mathbf{2}}, \cdots, \mathbf{v}_{\mathbf{n}-\mathbf{1}}-\mathbf{v}_{\mathbf{n}}, \mathbf{v}_{\mathbf{n}}\right)
$$

Let \mathbf{v} be an arbitrary vector in V.
Goal: We want to find scalars $a_{1}, a_{2}, \cdots, a_{n}$ in \mathbb{F} such that:

$$
\begin{equation*}
\mathbf{v}=a_{1}\left(\mathbf{v}_{\mathbf{1}}-\mathbf{v}_{\mathbf{2}}\right)+\cdots+a_{n-1}\left(\mathbf{v}_{\mathbf{n}-\mathbf{1}}-\mathbf{v}_{\mathbf{n}}\right)+a_{n} \mathbf{v}_{\mathbf{n}} \tag{1}
\end{equation*}
$$

What we know: Since $\left(\mathbf{v}_{\mathbf{1}}, \cdots, \mathbf{v}_{\mathbf{n}}\right)$ spans V, we know that there exist scalars $b_{1}, b_{2}, \cdots, b_{n}$ in \mathbb{F} such that:

$$
\begin{equation*}
v=b_{1} \mathbf{v}_{\mathbf{1}}+b_{2} \mathbf{v}_{\mathbf{2}}+\cdots+b_{n} \mathbf{v}_{\mathbf{n}} \tag{2}
\end{equation*}
$$

Scratchwork: ${ }^{3}$
Expanding (1) out, we get:

$$
\begin{aligned}
\mathbf{v}=a_{1}\left(\mathbf{v}_{\mathbf{1}}-\mathbf{v}_{\mathbf{2}}\right)+\cdots+a_{n-1}\left(\mathbf{v}_{\mathbf{n}-\mathbf{1}}-\mathbf{v}_{\mathbf{n}}\right)+a_{n} \mathbf{v}_{\mathbf{n}} & \\
=a_{1} \mathbf{v}_{\mathbf{1}}-a_{1} \mathbf{v}_{\mathbf{2}}+a_{2} \mathbf{v}_{\mathbf{2}}-a_{3} \mathbf{v}_{\mathbf{3}}+\cdots+a_{n-1} \mathbf{v}_{\mathbf{n}-\mathbf{1}}-a_{n-1} \mathbf{v}_{\mathbf{n}}+a_{n} \mathbf{v}_{\mathbf{n}} & \text { by distributivity } \\
=a_{1} \mathbf{v}_{\mathbf{1}}+\left(a_{2}-a_{1}\right) \mathbf{v}_{\mathbf{2}}+\left(a_{3}-a_{2}\right) \mathbf{v}_{\mathbf{3}}+\cdots+\left(a_{n}-a_{n-1}\right) \mathbf{v}_{\mathbf{n}} & \text { by distributivity }
\end{aligned}
$$

But comparing this with $\mathbf{v}=b_{1} \mathbf{v}_{\mathbf{1}}+b_{2} \mathbf{v}_{\mathbf{2}}+\cdots+b_{n} \mathbf{v}_{\mathbf{n}}$, we guess ${ }^{4}$ that:

$$
\begin{array}{rrr}
a_{1}= & b_{1} \\
a_{2}-a_{1}= & b_{2} \\
\cdots & \\
a_{n}-a_{n-1}= & b_{n} \tag{6}
\end{array}
$$

[^2]That is:

$$
\begin{array}{rc}
a_{1}= & b_{1} \\
a_{2}= & a_{1}+b_{2} \\
\ldots & \\
a_{n}= & a_{n-1}+b_{n}
\end{array}
$$

Therefore:

$$
\begin{array}{cc}
a_{1}= & b_{1} \\
a_{2}= & b_{1}+b_{2}
\end{array}
$$

$\begin{array}{cc} & a_{n}=b_{1}+\cdots+b_{n} \\ \text { In other words: } & a_{i}=b_{1}+b_{2}+\cdots+b_{i} \quad(i=1, \cdots n) \quad{ }^{5},{ }^{6}\end{array}$

Proof that your guess works: ${ }^{7}$:
Let's calculate:

$$
\begin{array}{rr}
a_{1}\left(\mathbf{v}_{\mathbf{1}}-\mathbf{v}_{\mathbf{2}}\right)+a_{2}\left(\mathbf{v}_{\mathbf{2}}-\mathbf{v}_{\mathbf{3}}\right)+\cdots+a_{n-1}\left(\mathbf{v}_{\mathbf{n}-\mathbf{1}}-\mathbf{v}_{\mathbf{n}}\right)+a_{n} \mathbf{v}_{\mathbf{n}} & \\
=a_{1} \mathbf{v}_{\mathbf{1}}-a_{1} \mathbf{v}_{\mathbf{2}}+a_{2} \mathbf{v}_{\mathbf{2}}-a_{2} \mathbf{v}_{\mathbf{3}}+\cdots+a_{n-1} \mathbf{v}_{\mathbf{n}-\mathbf{1}}-a_{n-1} \mathbf{v}_{\mathbf{n}}+a_{n} \mathbf{v}_{\mathbf{n}} & \text { by distributivity } \\
=a_{1} \mathbf{v}_{\mathbf{1}}+\left(a_{2}-a_{1}\right) \mathbf{v}_{\mathbf{2}}+\left(a_{3}-a_{2}\right) \mathbf{v}_{\mathbf{3}}+\cdots+\left(a_{n}-a_{n-1}\right) \mathbf{v}_{\mathbf{n}} & \text { by distributivity again } \\
=b_{1} \mathbf{v}_{\mathbf{1}}+b_{2} \mathbf{v}_{\mathbf{2}}+\cdots+b_{n} \mathbf{v}_{\mathbf{n}} & \text { by (3) } \\
=\mathbf{v} & \text { by (2) }
\end{array}
$$

Therefore, working backwards:

$$
\mathbf{v}=a_{1}\left(\mathbf{v}_{\mathbf{1}}-\mathbf{v}_{\mathbf{2}}\right)+a_{2}\left(\mathbf{v}_{\mathbf{2}}-\mathbf{v}_{\mathbf{3}}\right)+\cdots+a_{n-1}\left(\mathbf{v}_{\mathbf{n}-\mathbf{1}}-\mathbf{v}_{\mathbf{n}}\right)+a_{n} \mathbf{v}_{\mathbf{n}}
$$

Hence (1) is satisfied with our choices of a_{1}, \cdots, a_{n} !
Since \mathbf{v} was arbitrary, we get $\operatorname{Span}\left(\mathbf{v}_{\mathbf{1}}-\mathbf{v}_{\mathbf{2}}, \cdots, \mathbf{v}_{\mathbf{n}-\mathbf{1}}-\mathbf{v}_{\mathbf{n}}, \mathbf{v}_{\mathbf{n}}\right)=V$.

[^3](3) (a) Write out the definition of linear independence

Definition: Let V be a vector space and $\left(\mathbf{v}_{\mathbf{1}}, \cdots, \mathbf{v}_{\mathbf{n}}\right)$ a list of vectors in V. Then $\left(\mathbf{v}_{\mathbf{1}}, \cdots, \mathbf{v}_{\mathbf{n}}\right)$ is linearly independent in V if for any scalars a_{1}, \cdots, a_{n} in \mathbb{F} :

$$
a_{1} \mathbf{v}_{\mathbf{1}}+\cdots+a_{n} \mathbf{v}_{\mathbf{n}}=\mathbf{0} \text { implies } a_{1}=a_{2}=\cdots=a_{n}=0
$$

(b) Suppose that $p_{0}, p_{1}, \cdots, p_{m}$ are polynomials in $P_{m}(\mathbb{F})$ such that $p_{j}(2)=0$ for each j, Prove that $\left(p_{0}, \cdots, p_{m}\right)$ is not linearly independent in $P_{m}(\mathbb{F})$.

Let's prove this by contradiction ${ }^{8}$.
Suppose that $\left(p_{0}, \cdots, p_{m}\right)$ is linearly independent in $P_{m}(\mathbb{F})$.
Then $\left(p_{0}, \cdots, p_{m}\right)$ is a linearly independent list of exactly $m+1$ vectors in P_{m}. However, since $\operatorname{dim}\left(P_{m}(\mathbb{F})\right)$ is exactly $m+1{ }^{9}$, we conclude that in fact $\left(p_{0}, \cdots, p_{m}\right)$ is a basis for $P_{m}(\mathbb{F})^{10}$.

In particular, by definition of a basis, we get that $\operatorname{Span}\left(p_{0}, \cdots, p_{m}\right)=$ $P_{m}(\mathbb{F})$.

But then, since $\operatorname{Span}\left(p_{0}, \cdots, p_{m}\right)=P_{m}(\mathbb{F})$ and $p(x)=1$ (the constant-1 polynomial) is in $P_{m}(\mathbb{F})$, by definition of Span, get that there are constants a_{0}, \cdots, a_{m} such that:

$$
p=a_{0} p_{0}+\cdots+a_{m} p_{m}
$$

Hence, by definition of a polynomial (as a function), we get that for all x :

$$
p(x)=a_{0} p_{0}(x)+\cdots+a_{m} p_{m}(x)
$$

In particular, setting $x=2$, we get $p(2)=1$ (by definition of p) and $p_{j}(2)=$ $0(j=0,1, \cdots, m)$, by assumption, hence the above equation becomes:

$$
1=a_{0}(0)+\cdots+a_{0}(0)
$$

That is:

$$
1=0
$$

Which is a contradiction $\Rightarrow \Leftarrow$. Hence $\left(p_{0}, \cdots, p_{m}\right)$ cannot be linearly independent in $P_{m}(\mathbb{F})$, hence it is linearly dependent in $P_{m}(\mathbb{F})$

[^4]
[^0]: Date: Wednesday, February 20th, 2013.
 ${ }^{1}$ It's ok to say $V=U_{1}+\cdots+U_{n}$, but then you would have to define what the sum of n vector spaces are

[^1]: ${ }^{2}$ You could have used Prop 1.8 and show that if $\mathbf{u}+\mathbf{w}=\mathbf{0}$ (where \mathbf{u} is in U and \mathbf{w} is in W), BUT then you would HAVE to prove that Prop 1.8 is true (that it is equivalent with your definition in (b))

[^2]: ${ }^{3}$ Although this is scratchwork, I would prefer if you wrote this on the exam, because in this way I would know how you obtained your a_{1}, \cdots, a_{n}
 ${ }^{4}$ CAREFUL, this is just a guess, it doesn't necessarily imply that $a_{1}=b_{1}$, etc., for example, the list $\left(\mathbf{v}_{\mathbf{1}}, \cdots, \mathbf{v}_{\mathbf{n}}\right)$ could be linearly dependent, then there are many different guesses that are correct

[^3]: ${ }^{5}$ Technically, you should prove this by induction, just as in the solutions to HW2
 ${ }^{6}$ It is CRUCIAL that you give us an explicit formula of the a_{i} (what you want to show) in terms of b_{i} (what you know). Just writing $a_{i}-a_{i-1}=b_{i}$ would be WRONG because you're not guaranteed that this recurrence relation has a solution!
 ${ }^{7}$ You HAVE to include this, the above was just scratchwork, i.e. a recipe to obtain your a_{i}

[^4]: ${ }^{8}$ Write that on the exam!
 ${ }^{9}$ You can take this for granted, or prove it by writing finding a basis of P_{m} and proving that it is a basis
 ${ }^{10}$ This is Prop 2.17 on page 32. For cases like this, you don't have to reprove all of Prop 2.17 , it's enough just to write directly that $\left(p_{0}, \cdots, p_{m}\right)$ is a basis for $P_{m}(\mathbb{F})$ as long as you say why you can apply it in this situation

